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Abstract During the last century, we have observed a warming climate with more intense precipitation
extremes in some regions, likely due to increases in the atmosphere’s water holding capacity. Traditionally,
infrastructure design and rainfall-triggered landslide models rely on the notion of stationarity, which
assumes that the statistics of extremes do not change significantly over time. However, in a warming
climate, infrastructures and natural slopes will likely face more severe climatic conditions, with potential
human and socioeconomical consequences. Here we outline a framework for quantifying climate change
impacts based on the magnitude and frequency of extreme rainfall events using bias corrected historical
and multimodel projected precipitation extremes. The approach evaluates changes in rainfall Intensity-
Duration-Frequency (IDF) curves and their uncertainty bounds using a nonstationary model based on Bayes-
ian inference. We show that highly populated areas across the United States may experience extreme pre-
cipitation events up to 20% more intense and twice as frequent, relative to historical records, despite the
expectation of unchanged annual mean precipitation. Since IDF curves are widely used for infrastructure
design and risk assessment, the proposed framework offers an avenue for assessing resilience of infrastruc-
ture and landslide hazard in a warming climate.

1. Introduction

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC; Pachauri et al., 2014)
states that since 1960 anthropogenic activities have likely contributed to altering the global water cycle by
increasing, more than decreasing, the number of heavy precipitation events in terrestrial regions. Indeed,
higher surface temperatures observed over the past decades (e.g., Barnett et al., 1999; Diffenbaugh et al.,
2015; Fischer & Knutti, 2015; Mazdiyasni & AghaKouchak, 2015; Melillo et al., 2014), mainly driven by human
activities (Melillo et al., 2014; Stott et al., 2010; Zhang et al., 2006; Zwiers et al., 2011), can alter the hydrologi-
cal cycle leading to more intense rainfall events (Cheng et al., 2014; Fischer & Knutti, 2016; Marvel & Bonfils,
2013; Min et al., 2011; Westra et al., 2013; Zhang et al., 2007). Reports indicate that many regions including
the United States, central Africa, parts of southwest Asia (i.e., Thailand, Taiwan), Central America, Australia,
and parts of eastern Europe have experienced more extreme events (DeGaetano, 2009; Fischer & Knutti,
2015; Melillo et al., 2014; Wasko et al., 2016; Zheng et al., 2015). Heavier precipitation events have increased
the risk of flooding at regional scale (Pachauri et al., 2014) and rainfall-triggered landslide activity in the
United States over the past few decades (Gariano & Guzzetti, 2016). Moreover, recent studies using precipi-
tation projections from Global Climate Models (GCMs) indicate that there is a high chance of substantial
impact on landslide activity in natural slopes (Robinson et al., 2017) and on the performance of man-made
earthen structures (Jasim et al., 2017; Vahedifard et al., 2017).

The observed trends and projected changes in future extreme events have called into question the pre-
paredness of existing and future construction (Hallegatte et al., 2013; Mailhot & Duchesne, 2010; Milly et al.,
2008; Moftakhari et al., 2017; Yan et al., 2018). Current design and failure risk assessment procedures for
infrastructure (e.g., dams, roads, sewer, and storm water drainage systems) and earthen structures (e.g., lev-
ees, natural, and engineered slopes) rely on rainfall Intensity-Duration-Frequency (IDF) curves for estimating
the design storm intensity and the corresponding flow. IDF curves represent the probable intensity of a
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rainfall event given a certain duration (or time of concentration—e.g., 24 h) and an average return period
(recurrence interval), estimation of which involves fitting a representative distribution function to observed
precipitation (Bonnin et al., 2006). In the current procedure, the parameters of the distribution are estimated
under the so-called stationary assumption (i.e., time-invariant parameters). This assumes that no significant
changes are expected in magnitude or frequency, and hence in distribution parameters of precipitation
extremes over time (Milly et al., 2008).

Several studies have considered nonstationary models for extreme value analysis to address temporal
changes in climate extremes (Huard et al., 2009; Katz, 2013; Katz et al., 2002; Krishnaswamy et al., 2015; Lima
et al., 2016; Mailhot et al., 2007; Mirhosseini et al., 2014, 2015; Mondal & Mujumdar, 2015; Obeysekera &
Salas, 2013; Read & Vogel, 2015; Sadegh et al., 2015; Salas & Obeysekera, 2013; Sankarasubramanian & Lall,
2003; Sarhadi & Soulis, 2017; Villarini et al., 2010; Vogel et al., 2011; Volpi et al., 2015; Willems et al., 2012; Yil-
maz & Perera, 2014; Zhu et al., 2012). Among those, Cooley et al. (2007) proposed a spatiotemporal Bayesian
hierarchical modeling approach for defining IDF maps for flood management in the Front Range of Colo-
rado. Villarini et al. (2009) presented a framework for dealing with annual maximum peak discharge under
nonstationary conditions. Rosner et al. (2014) introduced a novel methodology for flood risk assessment
integrating the concepts of under-preparedness and over-preparedness in a nonstationary context. Cheng
et al. (2014) developed a Bayesian-based framework for analyzing time-dependent extremes. Reliable non-
stationary analysis, however, requires understanding the deterministic process(es) causing time-variant
behavior (Cohn & Lins, 2005; Koutsoyiannis, 2005; Koutsoyiannis & Montanari, 2015; Lins & Cohn, 2011; Mon-
tanari & Koutsoyiannis, 2014; Serinaldi & Kilsby, 2015). For this reason, projecting observed historical trends
may lead to unreliable estimates of frequency for future extremes (Luke et al., 2017; Serinaldi & Kilsby,
2015).

One limitation of the methodologies proposed lies in the use of solely observed historical data for nonsta-
tionary extreme value analysis, with some assumption on future trends. However, Global Climate Models
(GCM), although they exhibit high uncertainty, offer plausible scenarios of future climate and can be imple-
mented for extreme value analysis, in particular for deriving future IDF curves. Therefore, we first outline a
new methodology for deriving multimodel nonstationary IDF curves. It incorporates simulations from multi-
ple GCMs processed using the nonstationary extreme value analysis method proposed by Cheng et al.
(2014). The IDF curves derived will then include information from both climate intermodel variability and
precipitation changes over time. We then introduce the concept of safety factor, i.e., ratio of medians of the
future relative to the past IDF curves, for practitioners who want to account for future changes in infrastruc-
ture loads (i.e., precipitation) during the design process and risk analysis. We, finally, propose a new way of
communicating the risk of hazardous climatic conditions by calculating the expected future return period
(i.e., average occurrence of an event in years) of events which, based on historical observations, have a
return period of 25, 50, and 100 years. Indeed, characterizing changes in extreme events in terms of
changes in the associated return period can be more easily interpreted by both experts and nonexperts. We
will apply the new framework to annual precipitation maxima intensity in a number of urban areas across
the United States to calculate updated future IDF curves, expected future changes in the frequency (return
period) of extreme precipitation intensity, and safety factors for the locations investigated.

2. Data

In this study, we focus on extreme precipitation events in a number of cities across the United States (see
supporting information Tables S2 and S3), where urbanization, when compounded with rare precipitation
events, can lead to extreme floods and landslide activity with potentially high impacts on the population.

We retrieved downscaled GCM simulations of historical and projected precipitation from the Coupled
Model Intercomparison Project Phase 5 (CMIP5), made available through the online archive Downscaled
CMIP3 and CMIP5 Climate and Hydrology Projections (DCHP; Brekke et al., 2013). Future projections are
based on four Representative Concentration Pathways (RCPs) each of them describing a potential future
GHG concentration trajectory during the twenty-first century (IPCC2014; Pachauri et al., 2014).

For this study, we selected the CMIP5-BCCAv2 (Bias Corrected Constructed Analogs) daily precipitation
products with 1/88 spatial resolution, developed using the constructed analogs downscaling method, and
bias corrected based on available observations, using a quantile mapping technique (Hidalgo et al., 2008).
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We selected the models in supporting information Table S1 that provide the following simulations: histori-
cal simulations from 1950 to 1999, and future projections between 2050 and 2099 from RCP4.5 (moderate
GHG concentration trajectory) and RCP8.5 (very high GHG concentration trajectory). The interval selected
for our historical simulations (1950–1999) coincides with the period of time in which the historical simula-
tions were adjusted based on available observations (Hidalgo et al., 2008).

Afterward, we processed GCM daily precipitation to obtain time series of annual maxima precipitation
intensity within a water year (October–September, as defined by the United States Geological Survey—
USGS) for events of 1–7 days duration. The duration of precipitation events in the present study (1 day
events and higher) has been constrained by the time resolution of the GCM simulations. A time series of
annual maxima is retrieved as follows. Let us consider the time series of daily precipitation of the j’th water

year, Pj5fpj
1; . . . ; pj

njg, where nj is the number of days in the j’th water year. The annual maximum precipita-

tion intensity of a d day event for the j’th water year is
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. The time series of annual maxima is then

Pd;max5fP1
d;max; . . . ; Pny

d;maxg, where ny is the total number of water years. We processed the historical simula-

tions and the projections independently, model by model. Each time series consists of 49 water years (num-
ber of water years contained in a 50 year period). Thus, each station has the following set of time series:
HEs

m;d; FE45s
m;d , and FE85s

m;d corresponding to historical simulations, RCP4.5, and RCP8.5 projections, respec-

tively; s indicates the urban area; m refers to the GCM; d expresses the duration of the event in days.

3. Methodology

3.1. Distance Components Test
Here we are interested in characterizing changes in historical and future precipitation simulations. Specifi-
cally, we are interested in testing the null-hypothesis of equal distributions and equal means between
extreme precipitation from historical and future simulations to assess whether the statistics of extremes are
expected to change. There are specific tests for assessing equal distributions (e.g., Kolmogorov-Smirnov test
(Massey, 1951), Cram�er-von Mises test (Anderson, 1962), Anderson-Darling test (Anderson, 2011)), equal
means (e.g., analysis of variance (ANOVA) test, Student’s t test), presence of a monotonic trend (e.g., Mann-
Kendall trend test (Mann, 1945)). Here we have adopted the Distance Components (DISCO) test proposed
by Rizzo and Sz�ekely (2010) that combines equal distribution and equal mean tests. This method is a non-
parametric extension of the analysis of variance (ANOVA) and the multivariate analysis of variance (MAN-
OVA) tests as a more generalized hypothesis testing framework (Rizzo & Sz�ekely, 2010; Sz�ekely & Rizzo,
2013). Compared to the classical ANOVA and MANOVA tests, the DISCO test does not require a minimum
sample size and/or homogeneity of the error variance (Rizzo & Sz�ekely, 2010), and it can be implemented
under different null-hypotheses (i.e., equal means and equal distributions) eliminating the need for addi-
tional tests. Moreover, the test, available in the R package energy, is performed by permutation, avoiding
any dependence on the choice of the distribution (Rizzo & Sz�ekely, 2010; Sz�ekely & Rizzo, 2013).

The DISCO test is derived as follows. A version of the Gini mean distance statistic between two samples A5

fa1; . . . ; an1g and B5fb1; . . . ; bn1g is defined as follows (Rizzo & Sz�ekely, 2010):

gaðA; BÞ5 1
n1 � n2

�
Xn1

i51

Xn2

j51

jjai2bjjja5E½jjA2Bjja� (1)

where jj � jj is the Euclidean norm, and 0 < a � 2.

Let us consider K samples X1; . . . ; XK of sizes n1; . . . ; nK . Analogous to the decomposition of the variance in
the ANOVA test, the total dispersion of the K samples Ta is (Rizzo & Sz�ekely, 2010; Sz�ekely & Rizzo, 2013):

Ta5TaðX1; . . . ; XK Þ5
N
2
� gaðX; XÞ (2)

where N5
XK

k51
nk and X is the pooled sample. Moreover, the within-sample dispersion, Wa, and the

between-sample dispersion, Sa , are (Rizzo & Sz�ekely, 2010; Sz�ekely & Rizzo, 2013):
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where Ea5ð2gaðXj; XkÞ2gaðXj; XjÞ2gaðXk ; XkÞÞ is the Energy distance (Ea-distance). For 0 < a � 2, the
decomposition Ta5Wa1Sa holds and Wa and Sa are nonnegative (Rizzo & Sz�ekely, 2010; Sz�ekely & Rizzo,
2013). For K � 2 and 0 < a � 2, and X1; . . . ; XK independent and identically distributed (i.i.d.), the following
statements about Sa hold:

1. SaðX1; . . . ; XKÞ � 0;
2. for 0 < a < 2; SaðX1; . . . ; XKÞ50 if and only if X15 � � �5XK ;
3. a 5 2, S2ðX1; . . . ; XKÞ50, if and only if X1; . . . ; XK have equal means.

For proof and details see Theorem 1 and Corollary 1 in Rizzo and Sz�ekely (2010).

Given the properties of Sa, Rizzo and Sz�ekely (2010) proposed the following statistic for testing equal
distributions:

Fa5
Sa

K21

� �
� N2K

Wa

� �
(5)

Fa does not have an F-distribution, but it is nonnegative and takes large values when the samples X1; . . . ; XK

are drawn from nonequal distribution, supporting the alternative hypothesis (Rizzo & Sz�ekely, 2010).

Here we implemented the test considering two values of the index a: a 5 1 to test the null-hypothesis of
equal distributions between pairs of time series, and a 5 2 to test the null-hypothesis of equal means
between pairs of time series. The former choice corresponds to the Euclidean distance and allows ga (equa-
tion (1)) to be linearized, reducing the computational effort (Rizzo & Sz�ekely, 2010). The latter choice adds
information about the mean of the two samples.

3.2. Extreme Value Analysis for IDF Curves
Precipitation-based IDF curves estimation involves fitting a representative distribution function to observed
extreme precipitation (Bonnin et al., 2006). Extreme value analysis is widely used in hydrological design and
risk assessment for a statistical representation of rare events (Coles, 2001). Time series of annual maxima are
commonly described by the Generalized Extreme Value (GEV) distribution. The cumulative distribution func-
tion of the GEV distribution is (Cheng et al., 2014):

WðxÞ5exp 2 11n � x2l
r

� �� �21
n

� 	
(6)

for n � x2l
r


 �
> 0. l, r, and n are the statistics of the distribution: l is the location parameter and represents the

center of the distribution; r is the scale parameter and describes the distribution of the data around l; n is the
shape parameter and defines the tail behavior of the distribution. Current IDF curves in the United States, avail-
able through the National Oceanic and Atmospheric Administration (NOAA), are derived based on the stationary
GEV distribution (i.e., time independent parameters) shown in equation (6). The stationary GEV model can be
adapted for time-dependent series by letting the parameters of the distribution be a function of time
(lðtÞ; rðtÞ; nðtÞ) (Coles, 2001), for a more realistic representation of the time series behavior (Cheng et al., 2014).

Here we derived future IDF curves of precipitation based on a GEV distribution with time-dependent statis-
tics only upon detection of a statistically significant trend in the data (Mann-Kendall trend test (Mann, 1945)
with a 0.05 level of significance). We used the nonstationary extreme value analysis (NEVA) framework pro-
posed by Cheng et al. (2014) to estimate the distribution parameters because it has two main advantages:

1. It is versatile enough to deal with temporally stationary and nonstationary extremes (including annual
maxima and extremes over a particular threshold).

2. It is based on Bayesian inference and Differential Evolution Markov Chain (DE-MC), which provide both
parameter estimation and uncertainty quantification (Cheng et al., 2014).
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Let h be the parameter of a given distribution and let Y5fy1; . . . ; yng be the set of n observations. Follow-
ing the Bayes theorem, the probability of h given Y (posterior) is proportional to the product of the proba-
bility of h (prior) and the probability of Y given h (likelihood function). Assuming independence between
the observations Y :

pðhjYÞ /
Yn

i51

pðhÞ � pðyijhÞ (7)

In NEVA, the likelihood function is the GEV distribution, and h is the vector containing the parameters of the
GEV distribution to be estimated. In the stationary case, h 5 fl;r; ng. Hence, considering independent GEV
parameters:

pðl; r; njYÞ /
Yn

i51

pðlÞ � pðrÞ � pðnÞ � pðyi jl; r; nÞ (8)

In the case of a nonstationary analysis, h contains additional parameters, which are the coefficients of the
time-dependent functions, e.g., lðtÞ; rðtÞ, and nðtÞ

pðhjY; tÞ /
Yn

i51

pðhÞ � pðyijh; tÞ (9)

In NEVA, the priors are noninformative normal distributions, for location and scale parameters, while the
prior for the shape parameter is a normal distribution, with a standard deviation of 0.3, as suggested by
Renard et al. (2013) and Cheng et al. (2014). The DE-MC algorithm is then implemented to sample a large
number of realizations of h over the parameter space (Cheng et al., 2014). The R̂ criterion (Gelman & Shirley,
2011) is used to assess convergence, where R̂ should remain below 1.1 (Cheng et al., 2014). Moreover, Bayes
factor is implemented as a test for model selection: it compares the posterior distributions of two alternative
models (e.g., stationary model versus nonstationary model) (Cheng et al., 2014; Renard et al., 2013). For fur-
ther details about the Bayesian parameter estimation approach, the reader is referred to Cheng et al. (2014)
and Cheng and AghaKouchak (2014).

In this study, the nonstationary GEV distribution refers to a GEV distribution with either the location
parameter or location and scale parameters as a function of time. Hence, h is in the former case
h5fl1;l0;r; ng, and in the latter h5fl1; l0;r1; r0; ng. The selection of the nonstationary model versus
a stationary model depends on the Mann-Kendall trend (MK, with 5% significance level) test, which
characterizes the average behavior (mean) of the data over time. The mean can be regarded as an
approximation of the location parameter of the GEV distribution. Hence, we modeled lðtÞ to repro-
duce the observed trend. We assumed lðtÞ5l1 � t1l0, because a more complex trend could likely
result in an overfitting of the observation period and lead to an unrealistic representation of the future
(Serinaldi & Kilsby, 2015). Even though more complex models are considered in the literature to be
more accurate (e.g., Kwon & Lall, 2016; Sarhadi et al., 2016), parsimonious models (i.e., models showing
desired level of performance efficiency with a minimum number of parameters) have shown to per-
form better (Luke et al., 2017; Serago & Vogel, 2017; Serinaldi & Kilsby, 2015). In the case of a time-
dependent location parameter, the White test (White, 1980) for homoscedasticity is performed; if the
null-hypothesis of constant variance in the residuals is rejected (with 5% significance level), we
assumed a nonstationary model with time-dependent location and scale parameters. The scale param-
eter is modeled as logðrðtÞÞ5r1 � t1r0, as suggested by Coles (2001) to ensure positivity. Finally, n
was kept constant given the difficulties to precisely estimate it (Coles, 2001) especially for short time
series (Papalexiou & Koutsoyiannis, 2013).

3.3. Incorporating Multimodel Simulations for IDF Curve Analysis
GCM projections can provide information on characteristics of future extremes. Consequently, we propose
a new framework for deriving IDF curves of precipitation based on multimodel simulations. First, we derived
the IDF curves for the climate models using the aforementioned Bayesian inference approach (i.e., NEVA).
Since there is significant variability across the climate models (Figure 2), we chose to estimate the IDF curves
for each model separately. We then merged the resulting IDF curves from each model to derive multimodel
IDF curves. The final result is the expected IDF curve along with its uncertainty bounds, which summarize
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the variability due to both the parameter estimation approach (variability within each model) and the diver-
sity of climatic models (variability across models).

Here we applied the proposed framework to annual precipitation maxima intensities from historical simula-
tions HEs

m;d , and future climate FE45s
m;d and FE85s

m;d . Consequently, for each station, we derived the histori-
cal multimodel IDF curves and future multimodel IDF curves based on RCP4.5 and RCP8.5 scenarios. We
derived historical IDF curves imposing a stationary GEV model without performing a trend test to be consis-
tent with NOAA’s IDF curves. We then derived IDF curves from future climate projections RCP4.5 and RCP8.5
separately; the GEV model selected (stationary/nonstationary) depends upon the result of the Mann-Kendall
trend test, and subsequent White test. GCMs provide gridded area average simulations while the current
IDF curves available from NOAA are mainly based on point observations. Gridded area averaged observa-
tions are always smoother compared to point observations. Hence, we identified a bias by comparing his-
torical IDF curves and NOAA IDF curves, which implies assuming a quantile-based bias. We then applied the
same correction to historical and projected IDF curves.

In the case of a nonstationary GEV model, the GEV distribution function is time-dependent. The intensity of
the p-event is then given by

qp5 2
1

lnðpÞ

� �n

21

 !
� r̂
n

1l̂ (10)

where l̂ is l̂5medianðlðtÞÞ and r̂ is r̂5medianðrðtÞÞ. We selected l̂ and r̂ within the period of the simula-
tions to avoid any further projections of future climate.

Finally, we investigate how the frequency of past events is expected to change. Given the i’th set of GEV
parameters (li, ri, and ni) from the ensemble of solution, the expected return period Ti is given by 1

12WðIT Þ,
where WðIT Þ is as follows:

WðIT Þ5exp 2 11ni �
IT 2li

ri

� �� �2 1
ni

( )
(11)

Consequently, a sample of the return periods Ti of an event of intensity IT can be retrieved, Figure 1, and
inference can be made.

In this study, we selected the intensity of a 1 day event with return period T, IT, from the current
NOAA precipitation frequency estimates for a specific location. To assess whether the recurrence of an
event with intensity IT is projected to change under future climate scenarios, we used the ensemble of
return level curves retrieved via Bayesian inference to define IDF curves, and we derived the 0.25,
0.50, and 0.75 percentile of the ensemble. We then evaluated the expected future return period, along

Figure 1. Conceptual explanation of the methodology adopted to quantify changes in the occurrences of historical
events under future climate.
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with its interquartile variability as the intersection between IT and
the 0.25, 0.50, and 0.75 percentile curves.

4. Results

The null-hypotheses of equal distributions (a 5 1) and equal means
(a 5 2) between the median of historical records and the future cli-
mate projections are rejected (pvalue � 0), indicating that the occur-
rence of future extreme precipitation intensities are likely to
diverge from historical ones. This contradicts the commonly used
stationary assumption in infrastructure design and risk assessment.
Figure 2 shows the Empirical Cumulative Distribution Functions
(ECDFs) of 1 day extreme precipitation for 3 of the selected sta-
tions; supporting information Table S2 summarizes the percent
change in the median and in the 90th quantile of the simulated 1
day extreme precipitation intensity. The ECDFs of future climate
precipitation extremes (Figure 2) display a shift toward the right,
indicating that these cities may face an increase in severe rare
events in the near future, even though there is high variability
across the models. Overall, the RCP8.5 scenario seems to lead to
more severe events. In the western US, the percent change in the
median and the 90th quantile is around 10% for RCP4.5 and 10–
15% RCP8.5. Sacramento (CA) and Salt Lake City (UT) are the excep-
tion, as they display a percent change around 20% for both scenar-
ios (supporting information Table S2). In the eastern US, Chicago
(IL), Nashville (TN), and New York (NY) display a 15–20% change in
the median and 90th quantile for RCP8.5, while the remaining cities
exhibit a change around 10% or below for both scenarios (support-
ing information Table S2).

IDF curves provide information on the magnitude and recurrence of
extreme events based on frequency analysis. For this reason, shifts
in extreme rainfall distribution will affect how the IDF curves are
defined, and will also affect the intensity of the design value for the
event. Therefore, the resilience of infrastructures and natural and
engineered slopes can be compromised. Figures 3–5 show pairs of
current and projected IDF curves along with the 90% confidence
interval (or Credible Interval) within and across climatic models

based on RCP8.5 scenario (see supporting information Figures S1–S3 for RCP4.5) Under the future scenarios
chosen, our results show an overall upward shift of the IDF curves, indicating that more severe events are
expected to occur. Assuming that climate model simulations provide reasonable estimates of future
extremes, Figure 6b and supporting information Figure S4 show the so-called safety factors C (i.e., ratio of
medians of the future relative to the past IDF curves), if one is interested in adjusting current design values
to cope with a changing climate. In western US, the intensity of extreme events could potentially experi-
ence a 20% increase, e.g., Salt Lake City and Sacramento (Figure 6b).

After investigating the change in extreme event intensity for a fixed return period, we explored changes in
the frequency of extreme events of 1 day duration for a given event magnitude. Specifically, we chose the
intensity of three baseline events corresponding to 25, 50, and 100 year events (retrieved from current
NOAA IDF curves) to estimate their expected occurrence in the future, along with their interquartile range
(IQR). Figure 6a shows the return periods expected in the future of the baseline events (dots), along with
the IQR (gray lines). Events expected to occur every 50 or 100 years are becoming more frequent, raising
public safety concerns within anthropized environments, especially in the western US. For example, climate
model simulations project that the frequency of a 50 year event in the future will double in San Diego (CA)
and Salt Lake City (UT).

Figure 2. Comparison between 1 day extreme historical records (grey dotted
line) and future climate (RPC4.5 orange and RCP8.5 red dotted line) ECDFs. The
shaded dotted lines represent the uncertainty on the future climate. The inner
boxes show the right tail behavior of the distributions. (A) San Diego (CA), (E)
Chicago (IL), and (M) Atlanta (GA).
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Although the future scenarios predict changes in magnitude and frequency of extreme precipitation events,
total annual mean rainfall is expected to remain the same. Figure 6c shows that locations in the eastern US
register an increase in mean total annual precipitation and moderate changes in extreme events, whereas
locations in the western US do not expect to receive more water overall than in the past, even though
extreme events are predicted to become more severe and more likely. A recent study argues that drought
conditions in California, linked to warmer temperatures, have been worsened over the past decades, even
though negative precipitation anomalies have not shown any change (Diffenbaugh et al., 2015). Analo-
gously, in California, we observed total annual precipitation in a future climate consistent with the past.

Figure 3. RCP8.5—comparison between current (grey lines) and future climate scenario (red lines) IDF curves, along with 90% confidence intervals, given an
average return interval of 25 years.
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Consequently, to better characterize meteorological extremes over the state, we analyzed a number of
urban locations mainly along California’s coast (supporting information Table S3), adopting the same proce-
dures used for the other urban stations across the United States. California’s IDF curves are shown in sup-
porting information Figures S10–S15. However, we only used the four GCMs as recommended by the
guidelines for originating the California’s Fourth Climate Change Assessment Report (supporting informa-
tion Table S4) that offer much higher spatial resolution (1/168). Our results suggest a substantial increase in
the severity of future extreme precipitation events for RCP8.5 scenario (Figure 7). The results indicate an

Figure 4. RCP8.5—comparison between current (grey lines) and future climate scenario (red lines) IDF curves, along with 90% confidence intervals, given an
average return interval of 50 years.
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approximately threefold increase in occurrences of extremes relative to past events, particularly in southern
California (Figure 7).

5. Conclusion and Discussion

In this study, we have shown the potential impacts of a warming climate on extreme precipitation intensity
and recurrence interval. Urban areas, especially in the western US, may struggle against increases in severity
and frequency of rare events. Increase in intensity, duration, and frequency of extreme precipitation can

Figure 5. RCP8.5—comparison between current (grey lines) and future climate scenario (red lines) IDF curves, along with 90% confidence intervals, given an
average return interval of 100 years.
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Figure 6. (a) Return periods under future climate of events currently associated with return periods of 50 and 100 years in urban locations across the United States:
expected projected return periods (dots) along with interquartile range (IQR—grey lines). (b) Safety factors (i.e., ratio of medians of the future relative to the past
IDF curves). (c) Total annual mean precipitation of historical records.

Figure 7. Return periods under future climate of events historically associated with return periods of 50 and 100 years in California. Expected projected return
periods (dots) and 90% confidence interval (gray lines).
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adversely impact the integrity of infrastructure and natural and engineered slopes. Infrastructure built with
soil (e.g., earthen dams, levees, and embankments), or that interface with soil (e.g., roads, bridge, pipelines,
and foundations), are more vulnerable because severe rainfall causes soil erosion and, upon infiltration, can
significantly reduce the strength of soil. The topic of infrastructure resilience is even more important in
regions where multiple drivers of change coincide. Coastal cities, for example, are even more vulnerable
due to the compounding effects of sea level rise and change in climate (Hallegatte et al., 2013). By 2070,
the population jeopardized by extreme floods is expected to increase threefold with exposed assets increas-
ing by approximately 9% of the projected global GPD of the same period (Hanson et al., 2011).

We argue that better infrastructure planning and maintenance is fundamental for a resilient society. The
proposed method for addressing nonstationarity in future climate scenarios can reduce the risk of underes-
timating future extreme precipitation events and their severity. The adaptation of existing infrastructure,
which were designed assuming a stationary climate, requires assessing their performance under future cli-
mate scenarios. Further, it requires revisiting design guidelines for infrastructure to employ nonstationary
IDF curves in future design procedures.
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